
J .  Fluid Mech. (1994), vol. 213, p p .  109-124 
Copyright 0 1994 Cambridge University Press 

109 

Free-surface flows past a surface-piercing object 
of finite length 

By J. ASAVANANT A N D  J.-M. VANDEN-BROECK 
Department of Mathematics and Center for the Mathematical Sciences, 

University of Wisconsin-Madison, Madison, WI 53705, USA 

(Received 12 August 1993 and in revised form 8 February 1994) 

Steady two-dimensional flows past a parabolic obstacle lying on the free surface in 
water of finite depth are considered. The fluid is treated as inviscid and incompressible 
and the flow is assumed to be irrotational. Gravity is included in the free-surface 
condition. The problem is solved numerically by using boundary integral equation 
techniques. It is shown that there are solutions for which the flow is supercritical both 
upstream and downstream and others for which the flow is subcritical both upstream 
and downstream. These flows have continuous tangents at both ends of the obstacle at 
which separation occurs. For supercritical flows, there are up to three solutions 
corresponding to the same value of the Froude number when the obstacle is concave 
and up to two solutions when the obstacle is convex. For subcritical flows, there are 
solutions with waves behind the obstacle. As the Froude number decreases, these 
waves become steeper and the numerical calculations suggest that they, ultimately, 
reach limiting configurations with a sharp crest forming a 120" angle. 

1. Introduction 
This paper is devoted to the study of two-dimensional steady flows past a curved 

object lying on a free surface in water of finite depth (see figure 1). Even though this 
is a two-dimensional problem, it can be used to model some real flows, e.g. a ship or 
a barge-like vessel moving at a constant velocity in a channel. 

Over the last two hundred years, many approximate solutions have been obtained 
by linearizing the equations around a uniform stream with constant velocity U and 
constant depth H .  The properties of these linear solutions are characterized by the 
Froude number 

where g is the acceleration due to gravity. If F > 1, the flow is called supercritical and 
is characterized by a uniform stream in the far field (see figure 1 a). If F < 1, the flow 
is called subcritical and is characterized by a train of waves downstream (see figure 1 b). 
In this paper, we solve the complete nonlinear equations numerically. Although the 
value F = 1 is not a significant critical value for nonlinear solutions, we still refer to 
solutions with F < I as subcritical and to solutions with F > 1 as supercritical. 

It is not obvious that there are flows with continuous free-surface profiles such as 
those sketched in figure 1. A possible kind of discontinuity is the breaking of the free 
surface near the leading contact point B. In water of infinite depth, previous 
investigators (Vanden-Broeck & Tuck 1977 ; Vanden-Broeck, Schwartz & Tuck 1978 ; 
Vanden-Broeck 1985) showed analytically and numerically that there are no 
continuous solutions for flows past a semi-infinite two-dimensional object with a flat 
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FIGURE 1. Sketch of supercritical flow (a) and subcritical flow (b)  past a curved object ( F  > 0) with 
continuous tangents at both separation points B and E. The height of the vertex of the object above 
the bottom is Wand the distance between B and E is L. 

bottom and a vertical front such that the flows approach a uniform stream in the far 
field and separate at a stagnation point. Dias & Vanden-Broeck (1993) constructed 
numerically discontinuous solutions by including a model for the breaking of the free 
surface. On the other hand, Madurasinghe & Tuck (1986) constructed solutions with 
continuous free-surface profiles for flows past semi-infinite objects by assuming that 
the free surface attaches tangentially at the separation point. In water of finite depth, 
there are also continuous solutions for which the flows rise up along the vertical front 
of the body to a stagnation point at which attachment occurs (see Vanden-Broeck 
1989). 

All the studies discussed in the previous paragraph are restricted to semi-infinite 
obstacles. Here we consider objects of finite length. We show numerically that there are 
continuous supercritical and subcritical solutions for which the free surfaces attach 
tangentially at the separation points B and E (see figure 1). 

An important question is the number of parameters necessary to describe the flows. 
As we shall see, both supercritical flows and subcritical flows are characterized by three 
parameters. These parameters are (i) the Froude number I;, (ii) the object geometry c 
(object is concave if c > 0 and convex if E < 0), (iii) the location of one of the separation 
points. 

For supercritical flows past a concave object ( F  > 1, E > 0), there are two different 
families of solutions. One family of solutions is characterized by a position of the object 
below the level of the free surface at infinity. These solutions model a ship moving at 
a constant velocity in a channel. The other family of solutions is characterized by a 
position of the object on top of the level of the free surface at infinity. These solutions 
model an object riding on top of a wave. As e+O,  they reduce to the ‘surfing flows’ 
past a flat plate considered by Vanden-Broeck & Keller (1989). 

For supercritical flows past a convex object ( F  > 1, c < 0), there is only one family 
of solutions for which the position of the object is on top of the level of the free surface 
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at infinity. These solutions are found to be qualitatively similar to those for flows past 
a submerged obstruction (see Vanden-Broeck 1987 ; Dias & Vanden-Broeck 1989; 
Shen, Shen & Sun 1989). In addition, they are consistent with the analytical findings 
of Craig & Sternberg (1991). 

For subcritical solutions (F  > l), the flow is characterized by a train of periodic 
waves behind the object. We show that these waves become steeper as F decreases. As 
F increases, the amplitude of the waves decreases for a concave object, whereas the 
amplitude of the waves increases for a convex object. 

The supercritical flows are considered in $2. The problem is formulated by using a 
boundary integral equation technique and the numerical results are presented. The 
subcritical flows are discussed in $3.  

2. Supercritical flows (P> 1 )  
2.1. Formulation 

Let us consider the steady two-dimensional irrotational flow of an incompressible 
inviscid fluid past a parabolic object lying on a free surface in water of finite depth (see 
figure 1 a). We assume that the flow is supercritical and that the object is described by 

Here (xo,yo)  is the vertex of the object and e is a parameter (positive, negative or zero). 
We choose Cartesian coordinates with the x-axis along the free surface at infinity and 
the y-axis through the vertex of the object. Therefore xo = 0. As 1x1 --f co, the flow is 
required to approach a uniform stream with constant velocity U and uniform depth H.  
The only body force considered here is due to gravity which is acting in the negative 
y-direction. We restrict our attention to supercritical solutions which are symmetric 
with respect to the y-axis. 

We introduce dimensionless variables by choosing U as the unit velocity and H as 
the unit depth. We define the complex potential f = $ + i$ and the complex velocity 
1; = df/dz = u-iu. Here u and u are the components of the velocity in the x- and y- 
directions respectively. Bothfand 1; are analytical functions of z = x + iy. The function 
1; does not vanish in the flow domain except possibly at the separation points B and E 
where stagnation points could occur. 

Without loss of generality we choose $ = 0 at the vertex C and @ = 0 on the free 
surface AB and EF. By the choice of our dimensionless variables $ = - 1 on the 
bottom AF. 

Consider now the complex function u - iu - 1 which vanishes at infinity. Since the 
bottom AF is a solid wall, the kinematic boundary condition is satisfied by reflecting 
the flow domain in the boundary AF. Thus we seek u-iu- 1 as an analytic function 
off in the strip -2 < $ < 0. 

To find a relation between u($) and u($) on the free surface $ = 0, we apply the 
Cauchy integral formula to the function u - iu - 1 with a contour consisting of the free 
surface @ = 0, the image 7,k = -2 of the free surface and two vertical lines at infinity. 
Thus 

y = ;€(x - xo)2 +yo. (2) 

Here u, u, u and if represent the horizontal and vertical velocities on y? = 0 and @ = - 2 
respectively. The first integral in (3 )  is of Cauchy principal-value form. Using the 
identities 

u($) = ~(6) and u(6) = -i@) (4) 
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u($) = u(-$) and u($) = -u(-$), 

we rewrite (3), after taking the real part, as 

~(4)- 1 = ily~($)[--+--]d$ 1 
1 

7t $-$ $+$ 

'('($1- ':) + '($1 ($-$I 

The atmospheric pressure is assumed to be constant on the free surface. By using the 
Bernoulli equation we write this condition as 

Here q denotes the magnitude of the velocity. In terms of the dimensionless variables, 
(7) becomes 

(8) 
2 

$ + p Y  = 1, 

where F is the Froude number defined in (1). 
Using the identity 

we can express the kinematic condition on BE as 

where 6 is the parameter describing the shape of the parabola in (2) and $, is the value 
of the potential function at the separation point E. 

On the free surface BA, we can rewrite (S), using (9), in terms of u($) and u($), as 

For given values of E ,  c $ ~  and F2,  (6), (10) and (1 1) define a system of integro-differential 
equations for u($) and u($). 

Next we introduce the M mesh points 

Qi=( i - l )E ,  i =  1 ,..., M ,  (12) 

where E is the interval of discretization. We shall satisfy (6) and (1 1) at the midpoints 
and Gi++ I = I , ,  ..., M -  1 respectively. Here 

Gie = $ e .  The kinematic condition (10) on BE is satisfied at the points @$, i = 1, . . ., i, - 1. 
Thus we obtain 2M-2 nonlinear algebraic equations for the 2M unknowns u(Gi) and 
u(Qi), i = 1, , . ., M .  An extra equation is obtained by requiring the velocity at the point 
E to satisfy both (8) and (10). Eliminating u between (8) and (10) and solving for u 
yields 

. .  
Gi+; = i(Gi+@. ) , i = 1, ..., M -  1 

u, = [( 1 -$Y,)/(l + E 2 x : ) ] .  
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The last equation is obtained by imposing 

u(@*) = 0. (14) 

The system of 2M nonlinear algebraic equations is solved by Newton's method. 
Finally, the shape of the free surface is obtained by integrating numerically (9). 

2.2. Numerical results 
We use the numerical scheme described in the previous sub-section to compute 
solutions for various values of F2, e and q ! ~ ~ .  We found that the behaviour of the 
solutions for different values of g5e > 0 is qualitatively similar. Thus it is sufficient to 
present the results for a fixed value of q5e, i.e. q5e = 0.6 for various values of F2 and e. 
The numerical accuracy is checked by increasing M while keeping E fixed and vice 
versa. We find that the results are independent of M and E, within graphical accuracy, 
for M 2 120 and E d 0.18. All the results presented here were obtained with M = 180 
and E = 0.1 and are correct to at least two decimal places unless otherwise mentioned. 

As q5e+0, the length L between the two separation points B and E reduces to zero 
and we recover the case of a solitary wave. We find that the solitary wave reaches its 
limiting configuration with a sharp crest and a 120" angle at F2 = 1.69. This critical 
value of the Froude number agrees within 2 % with the more accurate value F2 = 1.66 
obtained by Hunter & Vanden-Broeck (1983). 

Following Vanden-Broeck & Keller (1989), we define the amplitude parameter 

a = W / H .  (15) 
Here W is the distance from the bottom AF to the vertex of the obstacle. 

When e = 0, the obstacle reduces to a flat plate and we recover the results of Vanden- 
Broeck & Keller (1989). There is a two-parameter family of flows which bifurcate from 
the uniform flow, for which a = 1 at F2 = 1. As a+ 1, the free surfaces tend to 
approach solutions of the Korteweg-de Vries equation which describes solitary waves 
of small amplitude: 

y =  ( a - l ) s e c h 2 [ ( ~ ~ ( x f i L ) ] ,  3 1x1 >;L, 
4(1 +a) 

a = F2. 
As a increases, the solutions ultimately reach a limiting configuration with stagnation 
points and 120" angle corners at B and E. Substituting y = a-  1 and q = 0 into (8), we 
find that these limiting configurations are characterized by a-  1 = iF2.  

The solutions for e $. 0 can be viewed as a perturbation of the solutions for e = 0. 
When e = 0, there are two branches of solutions : the uniform flow a = 1 and a branch 
which bifurcates from the uniform flow at F2 = 1. When e =!= 0, the uniform flow is no 
longer a solution for any value of F2. Therefore we can expect a perturbed bifurcation 
from F2 = 1. 

When e > 0, we find two different types of solutions. Solutions of the first type are 
characterized by a-  1 < 0, i.e. the vertex of the obstacle is below the level of the free 
surface at infinity. These solutions model a ship moving at a constant velocity in a 
channel. A typical profile is shown in figure 2. Solutions of the second type are 
characterized by a-  1 > 0, i.e. the vertex of the obstacle is above the level of the free 
surface at infinity. These solutions model a surfboard riding on a wave. A typical 
profile of a solution of this type is shown in figure 5. The numerical values of F2 versus 
a-  1 for a fixed value of q5e, and various values of 6 are shown in figure 3. 
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FIGURE 2. Computed free-surface profile of the flow corresponding to solutions of the first type, 
a- 1 <: 0, for F2 = 1.55, E = 0.05 and 9, = 0.6. 
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FIGURE 3. Values of the dimensionless height (W-  H ) / H  = a - 1 of the vertex of the object above the 
free-surface level at infinity versus F 2  for various values of E and #e = 0.6. The dashed curve at the 
top of the figure corresponds to the limiting cases in which stagnation points with 120" angle occur 
at the edges of the object. The dot-dash curve corresponds to the limiting cases in which the crests 
of the bumps reach their maximum heights. 

The solutions of the first type, a-  1 < 0, can be viewed as perturbations of a uniform 
flow (i.e. they approach the uniform stream as t: + 0 for a fixed value of F'). These 
branches of solutions extend from F2 = 1 to F2 = co (see figure 3). We expect that 
these branches can be extended to the subcritical regime (F' < 1) by allowing waves 
downstream. Solutions with waves will be considered in the next section. 

The. solutions of the second type, a-  1 > 0, can be viewed as perturbations of the 
branch of solutions with t: = 0 which bifurcate from F2 = 1. On these branches of 
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FIGURE 4. Values of L versus F 2  for solutions of the second type, a-  1 > 0 with $e = 0.6. 
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FIGURE 5. Computed free-surface profile of the flow corresponding to solutions of the second type, 
a-  1 > 0, for F 2  = 1.5, E = 0.05 and $e = 0.6. This solution corresponds to (*) in figure 3. 

solutions, there are three critical values, Fj, Fi and F:, of F2 such that, for each 6, there 
are no solutions for F2 < Fi and F2 > F;, two solutions for Fi < F2 < and one 
solution for F: < F2 < F,". They can easily be seen in figure 3 : the critical values Fi are 
the turning points, the critical values F: are on the lower dot-dash curve and the 
critical values p: are on the upper dashed curve. Stagnation points with corners occur 
at the separation points B and E when F2 = F:. The angle of the corners depends on 
the local slope 6 of the obstacle at the separation points (Dagan & Tulin 1972). If 6 at 
E is smaller than 4 3 ,  then the angle of the corner is 120". If S > 4 3 ,  then the angle 
of the corner is 90". In all our computation, S was always smaller than 4 3 .  It can be 
shown, by substituting y = a-  1 and q = 0 into (8) and using (2), that these limiting 
configurations are characterized by 

(16) 
The limiting configurations cannot be calculated directly by our scheme since we 
assumed that the flow leaves the obstacle tangentially. However we were able to 
compute solutions very close to the limiting configurations. Values of L versus F2 are 
presented in figure 4. Relation (16) corresponds to the upper dashed curve in figure 3. 
A typical profile for a value of Fi < F2 < F; is shown in figure 5 .  

Near F2 = Fi, 'bumps' (or 'valleys') appear on the free surfaces. These bumps are 

a - 1 = i (F2 - iL2€). 
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FIGURE 6. (a) Computed profile of flow for F2 = 1.5, E = 0.05 and $e = 0.6. This solution corresponds 
to (0) in figure 3. (b)  Comparison between the crests of the bumps (0) in (a)  with the solitary wave 
(-) corresponding to F2 = 1 S. 
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the same values of F2 = 1.5 and $e = 0.6. 
FIGURE 7. Two supercritical profiles for E = 0.05 and 0.3 corresponding to 

not far away from the obstacle when F2 is close to Fi. However, as F2 increases along 
the lower portion of the curve for a fixed e in figure 3, the distance between the crests 
of the bumps and the separation points increases. Furthermore, the elevation of the 
crests of these bumps above the level of the free surface at infinity also increases. 
Typical profiles of such flows are shown in figures 6 and 7. When the bumps occur far 
from the obstacle, their shape tends to approach a solitary wave. This is illustrated in 
figure 6(b)  where we compare the bump for F2 = 1.5, E = 0.05 and 9, = 0.6 with the 
solitary wave corresponding to the same Froude number. 

The height of the bumps increases progressively as F2 increases and ultimately the 
bumps reach limiting configurations with stagnation points and 120" angles at their 
crests when F2 = F: (lower dot-dash curve in figure 3). Figure 7 shows a comparison 
of profiles with bumps at the same value of F 2  for different values of E .  The heights of 
the bumps are approximately at the same level. However, the bumps move farther 
away from the separation points as E decreases. We expect that the solutions will 
approach the uniform flow as c reduces to zero for a fixed F2.  The approach is non- 
uniform in the sense that the amplitude of the bumps does not decrease: they simply 
move to infinity as e + 0. 

For the case e < 0, the solutions are found to be, qualitatively, similar to those for 
the flows past a submerged obstruction (Forbes & Schwartz 1982; Vanden-Broeck 

O I  I I I 
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FIGURE 9. Values of a- 1 versus F2 for q5e = 0.6 and four values of E < 0. The dashed curve 
corresponds to the limiting cases for which stagnation points with a 120" angle occur at the edges of 
the object. 

FIGURE 10. Two supercritical profiles corresponding to the same values of F2 = 1.2, E = -0.1 and 
g5e = 0.6. The solution with the higher elevation corresponds to a perturbation of the solution with 
E = 0 of Vanden-Broeck & Keller (1989). The solution with the lower elevation corresponds to a 
perturbation of a uniform stream. 

1987; Dias & Vanden-Broeck 1989; Shen et al. 1989). A typical profile is shown in 
figure 8. Numerical values of 01- 1 versus F2 for various values of E and q5e = 0.6 are 
presented in figure 9. A comparison of figures 3 and 9 shows that the solutions for E c 0 
do not have the same behaviour as the solutions for E > 0. Here there are only two 
critical values 1 < pi < Fg of F2, for each e and $e, such that there are no solutions for 
F2 < Fi, two solutions for Fi < F2 < F;, and a unique solution for F2 > pi. It can be 
seen from figure 9 that, as a - 1 increases, F2 first decreases to a minimum value Fi and 
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then increases up to a critical value FE. The values F; are on the dashed curve which 
agrees with relation (16). Solutions for F2 = FE corresponds to profiles with stagnation 
points at both separation points with an angle of 120'. The lower portion of the solid 
curves in figure 9 corresponds to solutions that are perturbation of the uniform stream, 
whereas the upper portion of the curves corresponds to solutions that are perturbations 
of the solutions of Vanden-Broeck & Keller (1989) for E = 0. These two types of 
solutions are shown in figure 10. 

3. Subcritical flows ( F <  1) 
We use the boundary integral equation technique developed in 52 to calculate 

subcritical flows past a surface-piercing obstacle. Unlike supercritical solutions, 
subcritical solutions have a train of waves behind the obstacle and a net horizontal 
drag force exerted on the wetted surface of the obstacle (see figure lb). 

The flow upstream is uniform with velocity U and depth H .  We select U as the 
reference velocity and H as the reference depth. A slight change in the choice of the 
coordinate axis is made here because the abscissa of the vertex of the obstacle is not 
known in advance. We choose the x-axis along the free surface at x = - GO and the y- 
axis through the separation point B at which 4 = 0 (see figure 11). By the choice of our 
dimensionless variables, the Froude number F is defined as in (1). The shape of the 
obstacle is described by (2). 

Proceeding as in 92.1, we obtain the same integral equation (3). Since there is no 
symmetry with respect to the y-axis for the subcritical case, the domain of integration 
in (3) cannot be reduced to the one in (6). Using (4) and taking the real part of (3), we 
obtain the integral equation for the velocity components on the free surface: 

The kinematic condition on BE is 

'(4) = 4+) (x - xo). (18) 
It is convenient to eliminate the term (x - x,) in (18) by differentiating (1 8) with respect 
to 4. Using the fact that ax/a$ = u/(u2 + v2)  and the relation (1 8) itself, we obtain the 
new expression for the kinematic condition on BE: 

The free-surface boundary condition remains as it was in (8). The radiation condition 
prohibiting the upstream disturbances must also be satisfied, i.e. 

We impose (13) at the separation point B to ensure that the free surface makes contact 
with the obstacle with a continuous tangent. For a given value of F, E and +e, the system 
of equations (17), (19), (20) and (8) determines the velocity components (u(#), ~(4)) on 
the free surfaces and the obstacle. Once u and v are known, we can calculate the profile 
of the free surfaces by integrating (9) over the streamline $ = 0. 

The wave drag D is calculated by integrating the pressure p over the obstacle wetted 
surface. That is 

u + l , v + O  as #+-GO. (20) 

pn,ds = --Zl:( 2 1 -y2-$)(x-xo)dx. (21) 
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FIGURE 11. Sketch of a subcritical flow with a change in the choice of the coordinate axis. 
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FIGURE 12, (i) Computed profile for B = 0.075 and $e = 0.91 : (a) F = 0.5, (b)  F = 0.4. (ii) Blow up of 
the downstream train of waves in (i). In (a) the waves are close to linear sine waves, while in (b)  they 
are clearly nonlinear with broad troughs and sharp crests. 

Here n, is the x-component of the outward unit normal vector to the obstacle. The 
wave drag is made dimensionless by reference to the quantity pgH2,  where p is the 
density of the fluid. After being transformed into the f-plane, (21) becomes 

D = -z/o 1 c, (1 -qz-2)-d$. U 

FZ u2+u2 

The numerical procedure follows closely the procedure described in $2. The 
derivatives u4 and U +  in (19) are approximated by 

where E is the interval of discretization. Here uib = u(# = 0), uib = u($ = 0), 
ude = u(# = #J and use = u($ = $e)  denote the velocity components at the separation 
points. 
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FIGURE 13. (a) The amplitude A of the waves versus F; (b) the steepness s of the waves versus F ;  (c) 
the dimensionless wave drag D versus F. The dot-dash curve in (a) and (b)  corresponds to the limiting 
cases characterized by a 120" angle at the crests (Cokelet 1977). The dashed curves are the 
extrapolated results. 

The numerical results show that subcritical solutions depend on three parameters, F, 
e and qbe. It is observed that the behaviour of the solutions is qualitatively similar for 
different values of $e. Thus, it is sufficient to present results at one particular value: 
9, = 0.91. The solution reduces to a uniform flow when e = 0. 

Typical profiles for 6 > 0 are shown in figure 12. These nonlinear solutions are 
obtained with N = 600 and E = 0.035. At a distance of about one wavelength aft of 
the obstacle, the wavetrain is essentially periodic. Figure 13(a) shows that the 
amplitude A of the waves, defined as the difference between the levels of a successive 
crest and trough, increases as F decreases. In addition, the steepness s of the waves, 
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FIGURE 14. Values of ( W -  H ) / H  = a-  1 versus F for some values of E > 0. The dashed curves are 
the extrapolated results. The values of a - 1 at F = 1, (a, 0 and x ) are obtained by using the scheme 
in $2. 
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FIGURE 15. (i) Computed profile for E = -0.075 and $e = 0.91 : (a)  F = 0.4, (b) F = 0.55. (ii) Blow up 
of the downstream train of waves in (i). In (a)  the waves are clearly nonlinear with broad troughs and 
sharp crests, while in (b) they are close to linear sine waves. 

defined as the difference of heights between a crest and a trough divided by the 
wavelength, is shown to be a decreasing function of F in figure 13 (b). For large values 
of F, the waves appear to be close to linear sine waves (see figure 12a). These waves 
tend to develop narrow crests and broad troughs showing the nonlinearity of the waves 
as F decreases (see figure 12 b). As F decreases to the critical value F*, the elevation of 
the crests tends to the stagnation level f(F*)2 and the waves reach their limiting 
configuration characterized by a 120" angle at the crests. In order to obtain these 
critical values, it is necessary to have a finer mesh to resolve the sharp crests. This 
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FIGURE 16. (a) The amplitude A of the waves versus F ;  (b)  the steepness s of the waves versus F ;  (c) 
the dimensionless wave drag D versus F. The dot-dash curve in (a) and (b)  corresponds to the limiting 
cases characterized by a 120" angle at the crests (Cokelet 1977). The dashed curves are the 
extrapolated results. 

requires an extensive use of computer time. The dashed curves in figures 13 (a) and 
13(b) are the extrapolations of the computed solutions (solid curves). Here and in the 
remaining part of the paper, all the extrapolations are obtained by fitting a second- 
order polynomial curve by a linear least-squares regression technique. The dot-dash 
curves in both figures correspond to the highest waves computed by Cokelet (1977). 

Figure 13 (c) shows the computed values of the wage drag D versus F. The numerical 
values of a- 1, defined in (15), versus Fare also presented in figure 14. Difficulties arise 
in the numerical computation as we attempt to calculate solutions for values of Fclose 
to one. This is because the waves become very long. The converged solutions 
incorrectly predict small periodic disturbances on the upstream free surface (see figure 
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12a). This indicates that farther truncation downstream of the integral in (17) and 
more mesh points are needed. We are able to obtain solutions up to F = 0.7. As we can 
see, the wave steepness s, the wave amplitude A ,  and the wave drag D decrease 
progressively as F increases. It is possible that the supercritical solutions (branch of 
solutions with a-  1 < 0) are the continuations of the present branch of solutions. This 
is suggested by figure 14. In this figure we extrapolate the computed solutions (solid 
curves) and show also the values a - 1 at F = 1 obtained by using the numerical scheme 
developed in $2. The extrapolated results (dotted curves) show a good agreement at 

Typical profiles for E < 0 are shown in figures 15(a) and 15(b). We observe that the 
behaviour of the solutions is similar to those for E > 0 in the low-speed region (small 
F) ,  that is the nonlinear effects are apparent when F is small. As F decreases, the wave 
aft of the obstacle begins to develop sharp crests and broad troughs (see figure 15a), 
and ultimately break when the crests become stagnation points with a 120" angle as 
F+F** .  However, the waves appear to be close to linear sine waves when F increases 
as shown in figure 15(b). In figure 16(a-c), we show that the wave amplitude A ,  the 
wave steepness s, and the wage drag D decrease to minimum values Amin, smin, and 
DmZn, and then increase as F increases. 

The numerical values of a- 1 versus F are presented in figure 17. In $2, we found 
that, for E < 0, there are no supercritical solutions when FJ1. This is clearly shown in 
figure 9 where the plots of a- 1 versus F2 have turning points for F > 1. Therefore the 
subcritical solutions for e < 0 cannot be continuously continued by the supercritical 
solutions as we expect in the case e > 0 (see the lower curves in figure 3 which extend 
to F2 = 1). Since A ,  s and D ultimately increase as F increases, we expect the waves to 
break when Freaches a critical value F***. Such a behaviour was observed by Forbes 
& Schwartz (1982) for the flow past a submerged obstruction on the bottom of a 
channel. 

In addition to the occurrence of small periodic disturbances on the upstream free 
surface when F is large, we found that the nonlinear profile begin to deviate from a 
periodic wave train. It is observed that the upstream disturbances grow as the 
amplitude of the waves increases. Owing to these numerical difficulties, we only present 
solutions for F < 0.6. 

Finally let us mention that the numerical procedures described in this paper can 

F =  1. 
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easily be adapted to study the flow past a prescribed distribution of pressure. As an 
example we present in figures 18(a) and 18(b) and, free-surface flows past the 
distribution of pressure defined by 

P W  = 0, 1x1 > b (24) 

and 

for F = 0.4 and b = 0.5. In figure 18 (a), 6 = 0.1 and the pressure is positive for 1x1 < b. 
In figure 18(b), 6 = -0.1 and the pressure is negative for 1x1 > b. Such solutions also 
describe the flow past an obstacle if the portion of the free surface for 1x1 < b is replaced 
by a rigid surface. 
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